
Dynamical energy limits in traditional and work-driven
operations I. Heat-mechanical systems

Stanislaw Sieniutycz *, Monika Kubiak

Faculty of Chemical Engineering, Warsaw University of Technology, 1 Warynskiego Street, 00-645 Warsaw, Poland

Received 4 December 2001

Abstract

Using irreversible thermodynamics we define and analyze dynamic limits for various traditional and work-assisted

processes of sequential development with finite rates important in engineering. These dynamic limits are functions

rather than numbers; they are expressed in terms of classical exergy change and a residual minimum of dissipated

exergy, or some extensions including time penalty. We consider processes with heat and mass transfer that occur in a

finite time and with equipment of finite dimension. These processes include heat-mechanical and (in Part II) separation

operations and are found in heat and mass exchangers, thermal networks, energy convertors, energy recovery units,

storage systems, chemical reactors, and chemical plants. Our analysis is based on the condition that in order to make

the results of thermodynamic analyses usable in engineering economics it is the dynamical limit, not the maximum of

thermodynamic efficiency, which must be overcome for prescribed process requirements. A creative part of this paper

outlines a general approach to the construction of ‘‘Carnot variables’’ as suitable controls. In this (first) part of work we

restrict to dynamic limits on work that may be produced or consumed by a single resource flowing in an open heat-

mechanical system. To evaluate these limits we consider sequential work-assisted unit operations, in particular those of

heating or evaporation which run jointly with ‘‘endoreversible’’ thermal machines (e.g., heat pumps). We also compare

structures of optimization criteria describing these limits. In particular, we display role of endoreversible limits in

conventional operations of heat transfer and in work-assisted operations. Mathematical analogies between entropy

production expressions in these two sorts of operations are helpful to formulate optimization criteria in both cases.

Finite-rate models include minimal irreducible losses caused by thermal resistances to the classical exergy potential.

Functions of extremum work, which incorporate residual minimum entropy production, are formulated in terms of

initial and final states, total duration and (in discrete processes) number of stages. � 2002 Elsevier Science Ltd. All

rights reserved.

Keywords: Carnot cycle; Finite-time thermodynamics; Heat pumps; Endoreversible engines; Exergy; Thermodynamic limits; Second
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1. Introduction: Energy limits by thermodynamic optimi-

zation

Voluminous literature on separation and exchange

operations may be found, especially in the field of op-

timization of separation units and heat and mass ex-

changers. This literature often deals with very diverse,

single-stage and multistage separation units and variety

of many complex systems composed of such units; op-

timizations run usually with either technical or economic

criteria with visible tendency towards complex process

economies. There are also efficient mathematical tech-

niques to solve related ordinary or partial differential

equations. However, mathematics seems to be mainly a

standard tool in this context. What is really novel

therein is a unifying, integrated concept of the dynami-

cal (finite time) limits for energy production or con-

sumption. The integrating nature of these limits is

important. Traditional chemical engineering approaches
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to exchange and separation processes dissect, in fact, the

field on the basis of what is specific for individual pro-

cesses (or systems) rather than integrate these individual

processes. As the consequence of such approaches an

engineer is perplexed whenever he has to shift his design

from one to another operation, and the most of his past

experience is of little use.

One of the major aims of analyses based on inte-

grated limits is to work out such conceptual approaches

that could lead an engineer to certain generic rather than

specific limits or bounds on practical or industrial pro-

cesses. They describe largely dynamic limits that exhibit

a significant degree of universality. The dynamic limits

are not only stronger than static, the consequence of

finite rates, but also are more useful in design. Our in-

terest is in revealing and systematizing such generic

limits, and this is an original feature of our approach,

not encountered in previous works on energy problems.

These limits may, for example, determine lower bound

for the amount of the energy supply, exploitation costs,

amount of a key substance, investment, equipment di-

mension, etc. They describe limitations that an engineer

will encounter during his design of exchange or separa-

tion units running with a prescribed minimal intensity

(local or average). Some bounds are so natural and

simple (as, e.g., that on the lowest heat consumption),

that one may confuse them with the well-known ther-

mostatic limitations. Still, the bounds we are looking for

are not classical bounds encountered in textbooks on

thermodynamics and separation science. Those classical

pertain to reversible and infinitely slow processes. They

are often unrealistically low and hence, very often, use-

less.

We are interested in ‘‘dynamic’’ bounds of physical

origin – usually functions of operational constraints –

established under the condition that, in any circum-

Nomenclature

A available energy (exergy)

bg, bs specific exergy of gas and gas in equilibrium

with solid

b0 specific exergy of controlling phase

c specific heat at the constant pressure

G mass flux, total flow rate

g1, g partial and overall conductances

HTU heat of transfer unit

In solid enthalpy at stage n

i0 specific enthalpy of controlling phase

ig, is specific enthalpy of gas and gas at equilib-

rium with solid

N total number of stages in a multistage pro-

cess

n current stage number of a multistage process

Pn, pn cumulative power output and power output

at nth stage

q1 driving heat in the engine mode of the stage

Rnðx; tÞ optimal work function of cost type in terms

of state and time

S solid entropy, entropy of controlled phase

(solid)

s0 specific entropy of controlling phase (gas)

Sr specific entropy production

T temperature of controlled phase (solid)

T e constant equilibrium temperature of reser-

voir

T 0 Carnot temperature, temperature of con-

trolling phase (gas)

t physical time, contact time

un ¼ DT n=Dsn rate of the temperature change as the

control variable

V ¼ maxW optimal work function of profit type

W ¼ P=G total specific work or total power per unit

mass flux

W n moisture content in solid from stage n

X 0 absolute humidity of controlling phase (gas)

x transfer area coordinate

Greek symbols

a0 overall heat transfer coefficient

g ¼ p=q1 first-law efficiency

hn free interval of an independent variable or

time interval at stage n

lk molar chemical potential of kth component,

l0 coefficient of outlet gas utilization

s non-dimensional time, number of the heat

transfer units ðx=HTUÞ

Subscripts

g gas

i ith state variable

s saturation, solid

1, 2 first and second fluid

Superscripts

e environment, equilibrium

f final state

i initial state

k or n number of kth or nth stage

Abbreviations

EGM entropy generation minimization

FTT finite-time thermodynamics
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stances, the process will run with a minimum required

intensity, yet yielding a desired product. This require-

ment usually yields bounds that are considerably higher

than those classical ones known from the textbooks.

Consider, for example, the heat consumption in a dis-

tillation column and evaluate a realistic bound that

corresponds with the lower limit of heat associated with

the use of the theoretical plates instead of the real plates

of certain unknown efficiency (lower than unity), in the

same column. This bound is usually 2–3 times larger

than another (lower) bound, the heat consumed at

minimum reflux conditions (already a quite artificial

quantity as it pertains to a column with infinite number

of theoretical stages). Next, the heat at minimum reflux

is usually several times larger than the reversible evap-

oration heat. In effect, a design engineer must expect

that, in the considered case, the heat consumption he

should assume should be at least of the order of mag-

nitude higher than the evaporation heat. In complex

separation processes as those involving cycles, losses,

and non-linearities such evaluations are highly non-

trivial. Complex optimization techniques must be used

to obtain dynamic limits for various processes, including

those in exchange and separation systems. The concep-

tual machinery of Finite-Time Thermodynamics (FTT)

and Optimal Control Theory that derives these limits

has recently found pronounced applications in design of

solar engines, solar cells, semiconductor devices, pho-

tosynthesis engines and other sophisticated devices, see,

e.g., a book of De Vos 1992 [1]. Such applications would

never be possible without extracting an abstract con-

ceptual tissue from the material that was previously

generated for separators and thermal engines.

Recent works on second law analyses often deal with

thermal systems composed of many objects and links

and include ecological applications of exergy. A basic

notion therein that is supposed to be of value in thermal

technology is the so-called cumulative exergy cost de-

fined as total consumption of exergy of natural resources

necessary to yield the unit of a final product [2]. Also

introduced is the notion of cumulative exergy loss, as the

difference between the cumulative exergy consumption

and exergy of the considered product. In ecology, eco-

logical counterparts of these quantities are introduced.

Consequently, in ecology, the so-called ecological cost

is introduced as the cumulative consumption of exergy

of unrestorable resources burdening a definite product.

Technical indicators obtained from related analyses are

used to forecast changes in demand for heat agents

caused by changes in production level and technology of

product yield and changes of costs of heat agents. This is

a way to obtain information about diverse energy-con-

suming (more exactly: exergy-consuming) technologies,

and this is also a way to compare these technologies.

Finally, so-called pro-ecological tax can be imposed as

the penalty for negative effects of action causing ex-

haustion of natural resources and contamination of

natural environment [2]. All these applications involve

non-equilibrium processes in which the use of sole no-

tion of the classical exergy seems insufficient without

including the associated notion of minimal (residual)

dissipation of this exergy. This is, in fact, the realm into

which we are driven with many analyses that lead to

non-equilibrium applications of the exergy. They emerge

since engineering processes must be limited by some ir-

reversible processes allowing a minimum entropy pro-

duction rather than by purely reversible processes.

Limits following from reversible processes are most

often too far from reality to be most useful.

However the method of cumulative exergy costs has

its own imperfections and disadvantages. Its definition

of the sequential process, no matter how carefully made,

is vague. The total consumption of exergy of natural

resources, necessary to yield a product which defines the

cumulative exergy cost, is burden by sorts, locations and

dates of various technologies, the property that usually

change process efficiencies, semiproducts, controls, etc.,

and thus influence the cost definition. One way to im-

prove the definition in question would be to deal with

statistical measures of the process and its exergy con-

sumption. Yet, a statistical procedure leading to an av-

eraged sequence process that would add the rigor to the

definition of cumulative costs, was not defined in the

original work [2]. Moreover, in the current definitions of

the cumulative exergy cost and ecological cost, the

mathematical structures of these costs and related opti-

mal costs remained largely unknown. In fact, the cu-

mulative costs are not functions but rather functionals

of controls and state coordinates, otherwise optimal

costs have properties of functions (potentials). To ensure

potential properties for optimal costs to deal with the

analyses efficiently, their definition should propose a

method that would eliminate the effect of controls. Yet,

the original definition of the cumulative exergy cost [2]

does not incorporate any approach that would eliminate

the extend effects of (controls etc.) the property that

makes this definition inexact and inobjective.

The solution to the above difficulties was recently

found in the series of work in FTT [3]. Therein the po-

tential cost functions are generated via an optimization,

i.e., potentials are foundwhich involve extremal (minimal

or maximal) values of the underlying cost criteria with

respect to controls but not states. The mathematical

structures of these cost criteria as discrete and continuous

functionals (not functions) were first recognized in FTT.

2. Diverse engineering operations and extended potentials

In both FTT and optimal control approaches, the

optimization of the cost expression (or an associ-

ated entropy production) automatically eliminates
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controlling parameters from the cost criteria, thus gen-

erating a potential (R or Rr). For a definite operation,

the potential depends only on initial and final states,

duration and (in multistage processes) total number of

stages. Suitable averaging procedures were proposed

along with methods that use averaged criteria and

models in optimization [3]. Most importantly, it was

shown that any optimal sequential process has a quasi-

Hamiltonian structure that becomes Hamiltonian in the

special cases of processes with optimal dimensions of

stages and in limiting continuous processes [1,4]. This

means that the well-known machineries of Pontryagin’s

maximum principle [5] and dynamic programming [6]

can effectively be included to generate optimal cost

functions in an exact way [3,4]. Finally these theoretical

achievements were transferred into the realm of opera-

tions governed by economical criteria [3]. Yet, bounds or

limits on the energy consumption must be defined as

purely physical quantities, independent of economical

properties of the operation [4].

Engineering processes are most often far from equi-

librium processes (i.e., outside of the realm of linear ir-

reversible thermodynamics), they must go to the desired

extent of completion within a finite time, and they must

produce at least a minimum amount of product. Fur-

thermore, efficiency based solely on physical grounds is

more often than not an insufficient criterion for the

performance of a chemical engineering process. Eco-

nomic and ecological considerations also play important

roles. All this means that classical equilibrium thermo-

dynamics can at most place lowest limits on chemical

engineering processes and that one must turn to irre-

versible thermodynamics for more information.

All classical measures of thermodynamic perfection,

such as the Carnot efficiency, exergy efficiencies or dis-

sipated exergy, have one characteristic in common: they

all take the reversible process as their basis, [7]. There-

fore, one can ask whether any real process operates close

enough to the reversible limit for the traditional mea-

sures to be useful or even relevant. If not, is it possible to

extend the concepts of reversible thermodynamics to

provide limits for the performance of processes con-

strained to operate in finite time or at non-vanishing

rates? If yes, what are the optimal paths related to the

finite-time transitions? These questions arose from the

need to evaluate how effectively real devices and real

industrial processes use energy, from the viewpoint of

their own limits rather than the reversible process limits.

They stimulated efforts to find bounds described by

certain potentials corresponding to a given process

performed in a finite time [8,9], in particular the ther-

modynamic bounds defined by the minimal values of the

total exergy dissipated or the total exergy driving a fi-

nite-time process [10]. The choice of optimization crite-

ria can, of course, affect the optimal performance and

the corresponding bounds.

FTT investigates the effects of constraints on time

and rate on the optimal performance of generic pro-

cesses through integral or sum expressions describingP
DSik ,

P
DBin

k ,
P

DBk , W, or their generalizations in-

cluding cost-type criteria, rather than pursuing the ir-

reversible equations exclusively. Usually the goal of an

FTT analysis is: (1) to find the paths of minimumP
DBin

k or
P

DSik for the purpose of finding realistic

bounds on consumption of energy and resources in

thermal, separation and chemical reaction processes

(here the ones incorporating the minimal necessary ir-

reversibility), (2) to find the optimal strategies or con-

trols for such processes, and (3) to refer these bounds to

an actual process to verify its possible improvement. The

bounds constructed on the basis of thermodynamic cri-

teria, in particular exergy, are both relevant and useful;

exergy is a unique common measure of various resources

and energy. Note that these bounds are in general func-

tions of state and duration rather than numbers. They

generalize the well-known thermostatic bounds for finite

time and/or rates. They are limits from the standpoint of

the ‘‘thermodynamic costs of the driving exergy’’,

K in ¼
P

DBin
k , or a similar criterion, and they should not

be identified with actual values of
P

DSik or
P

DBin
k in an

actual process which should run under an economic

rather than a thermodynamic optimum. They define

thermodynamic limits rather than the economic con-

sumption of exergy or resources for various generic

processes. Optimization techniques play a central role in

obtaining the majority of bounds in FTT. The methods

of linear programming [11] and non-linear programming

[12] are as a rule insufficient in those situations where

functional extrema are sought. Instead, the application

of optimal control techniques is necessary [13–15]. FTT

retains the philosophy of model idealization known

from reversible thermodynamics (the Carnot cycle) but

uses somewhat more realistic models which have some

basic irreversibilities incorporated, e.g. thermal resis-

tances between the reservoirs and working fluid (Curzon

and Ahlborn cycle [16]). Many results, even those gen-

erated by purely classical analyses, are new. For exam-

ple, recent results [17] show that when a part of the

dissipated energy remains within the system, not all of

the availability is necessarily lost. The bound defined by

the thermodynamic length no longer limits the avail-

ability losses but rather a so-called work deficiency, Wd

(where usually Wd > �DA), or the total loss of avail-

ability that would have resulted if all the available work

were lost to the environment [17].

The solution of a thermoeconomic problem is, in

general, not equivalent to that of the corresponding

thermodynamic problem. It does, however, reduce to

thermodynamic optimizations in two special cases. The

first case appears when the price of certain thermody-

namic quantities such as the power produced becomes

much larger than the prices of other participating
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quantities [18]. This limit represents an energy theory of

value, i.e., a value system in which one considers energy

as the single valuable commodity [19]. In the second case

the economic value of the exergy unit is the same for all

forms of matter and energy taking part in the process.

Then the thermodynamic problem of the minimum ex-

ergy loss is equivalent to that of the minimum of the

economic costs. This case is however quite special since

the prices of the exergy units generally differ [20]. Nev-

ertheless, a number of complex economic and ecological

analyses have been born as generalizations of thermo-

dynamic irreversibility analyses. While various perfor-

mance criteria hold for various problems (this variety

has already been admitted by extended versions of

FTT), the physical constraints are the product of ther-

modynamic analyses. Even if one replaces thermody-

namic criteria by economic ones, the same optimum

search method can often be used in both cases. Most of

the methodological experience gained from the formu-

lation of mathematical models of optimization can be

preserved when passing from thermodynamic to eco-

nomic optimization.

From the standpoint of thermoeconomics, optimi-

zation of the driving or propelling exergy (exergy costs

K) is admissible only after a fixed system structure has

been reached. This is because these costs can at best only

approximate the exploitation costs under the assump-

tion of a single exergy unit and for a constant invest-

ment. Yet, an approximate optimization of the tradeoff

between investment costs and exergy based exploitation

costs can offer useful estimates. This was summarized

by various researchers [20–23]. On the other hand, ap-

proaches to ‘‘optimal design’’ type that use the entropy

(or exergy) generated as their optimization criteria make

little sense from the standpoint of economic design.

While the finite time bounds obtained via such optimi-

zations can be of value in placing certain realistic limits

on the use of the exergy and resources, the design itself

can in this case correspond at best to the minimum of

the exploitation costs (approximated by the exergy costs

K). Sometimes this minimum may even require infinitely

large equipment as in the case of rectification. The dif-

ference in the role played by DSi and K ¼ DBi in ob-

taining the limits on the use of resources and in design

has been largely overlooked in many works.

Curzon and Ahlborn [1,16] showed that a heat engine

with heat resistances between the reservoirs and the

working fluid can operate between two extreme zero-

power limits (power being defined as work per cycle

time). One extreme is the reversible, Carnot limit at

maximum (Carnot) efficiency. This is the limit where the

engine cycles extremely slowly (quasistatically); the effi-

ciency is high, but the engine performs too few cycles to

deliver much power. If the engine cycles too fast it op-

erates inefficiently because it does not get hot enough or

cold enough to ensure that the ratio of the two extremal

temperatures of the working fluid, T 0
1=T

0
2, is much less

than 1. Hence the other extreme is the ‘‘thermal short

circuit’’ limit of zero power at zero efficiency. Heat en-

gines are usually designed to operate somewhere be-

tween the limit of the reversible maximum of efficiency

and that of maximum power [24]. The Curzon–Ahlborn

efficiency at maximum power is gmp ¼ 1� ðT2=T1Þ1=2,
regardless of the heat transfer coefficients and other

material properties. The original concept of Curzon and

Ahlborn has been extended to a richer spectrum of

problems in FTT by taking the main sources of dissi-

pation (e.g., finite heat conductances) into consider-

ation. This leads to even more realistic bounds on

performance. Curzon and Ahlborn analyzed Newtonian

heat exchange; models with various functional forms of

the temperature difference have also been designed [24].

Of practical importance is radiative heat transfer, where

the heat flux is proportional to temperature to the fourth

power. Another case is derived from linear irreversible

thermodynamics and considers the reciprocal tempera-

ture difference. These investigations show that the

Curzon and Ahlborn formula is not always simply a

function of the reservoir temperatures, T2 and T1. It
depends, in general, on other variables such as the res-

ervoir heat capacity (for finite reservoirs, see [25]) or the

specific heats of the working fluid. This efficiency is not a

fundamental upper limit for engines working at maxi-

mum power; it depends on the functional temperature

dependence of the heat exchange between the working

fluid and reservoirs. Moreover, real heat engines with

friction and heat leaks exhibit fundamentally different

power-efficiency curves than those in which finite-rate

heat transfer is the only irreversibility. The presence of

friction leads to higher efficiencies when the machine

operates more slowly, and heat leaks lead to higher ef-

ficiencies when the machine operates at faster rates. It

follows that optimization automatically sorts heat en-

gines into two distinct classes, those dominated by heat

leaks and those dominated by friction. (See the lucid

power-efficiency diagrams by Gordon [26]). The power-

efficiency curves exhibit a maximum power point and a

maximum efficiency point, the latter usually being well

below the Carnot efficiency. Time-dependent driving

functions that maximize power when heat input and

heat rejection are non-isothermal and the effects of

friction on the optimal solution have been determined

[27]. The optimal performance of an engine which op-

erates between a finite high temperature source and an

infinite heat reservoir and obeys the heat transfer law of

Onsager thermodynamics ðq ¼ K 0DT�1Þ has been com-

pared with the performance predicted for Newton’s

law of heat transfer [28]. The analysis showed that the

time of the absorbing heat process must be longer than

that of the releasing one in the Onsagerian case, but

that the times of the two heat exchange processes should

be the same for Newton’s law of heat transfer. Three
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heat-source cycles using low-level heat sources such as

solar energy, geothermal energy and waste heat have

been analyzed in a unifying treatment [29].

The exergy and heat consumed in separation units

can now be treated in general terms without reference to

any specific process, whether it be distillation, desorp-

tion, or drying. This leads to limits on the performance

of separation processes [30]. For a given separation

effect the lowest bound for heat consumption is deter-

mined by thermostatics and is given by the ratio of the

minimum work of separation to the related Carnot ef-

ficiency. However, this limit is unrealistically low, and,

more importantly, it does not correspond to any real

feed flow. An irreversible bound on the heat consumed

in separation processes has been determined as a func-

tion of feed flow [30] and gives a more realistic limit. It

includes the effect of entropy production r and simplifies

to the classical result in the limit of vanishing r. These
results show some resemblance to those known for the

efficiency of thermal engines evaluated at the maximum

power point.

For any finite rate separation process with a given

non-vanishing mass flow (average mass flow in the case

of cyclic processes) the exergy consumption is larger

than the corresponding reversible consumption. Since

the constraint on the feed flow (and any other con-

straints on e.g., boundary concentrations) is operative,

only a part of the entropy produced can be reduced

through an optimal choice of an operational parameter.

For a given feed flow such a reduction causes a related

decrease in the valuable heat; hence, the minimum of the

heat consumed corresponds indeed to the minimum of r.
Thus, there exists a more realistic lower bound, greater

than the classical value, on the valuable heat consumed.

This bound is a function of the flow F. Any real sepa-

ration process with a given feed flow will consume an

amount of heat that cannot be lower than this limit. This

value is still just a lower bound and is not the eco-

nomically optimal heat consumption for any particular

separation unit. Whatever the economical heat con-

sumption is, for a given operational situation this con-

sumption cannot be less than this lower bound.

Knowledge of this bound is of value for design.

A chemical engineer realizes however that it is not

necessary to speak about entropy production at all in

order to determine the lower bound on heat consump-

tion. One could simply minimize the heat as a function

of a parameter at given operational constraints. How-

ever, entropy production (or exergy dissipation) is a

convenient common measure of the imperfection of very

diverse processes. Yet the rate constrained thermody-

namic bounds of FTT may implicitly contain a constant

vector of certain non-thermodynamic quantities (e.g.,

design parameters). Care is necessary when their appli-

cation to design, where this vector may change, is in

question. The difference between FTT bounds and the

actual heat consumption can be illustrated by an ex-

ample of the economic design of a typical rectification

column [31]. The tradeoff between the operational and

investment costs results in the economical reflux, usually

several times larger than the lowest possible one. In the

rectification column the consumption of heat supplied to

the boiler grows linearly with the reflux R; Q ¼
DðRþ 1Þr, where r is the average heat of evaporation

and D is the flow of distillate. The actual heat is then

several times larger than the lowest possible one corre-

sponding to the minimum of entropy production. In

conclusion, real columns should never be designed to

operate at the bound of minimum heat (or minimum r)
even if this is not a thermostatic limit. However, for

existing plants where the investment is fixed or its vari-

ation can be ignored cumulative costs and second law

analyses are more useful.

Non-traditional energy sources have recently begun

to become economically realistic. Examples are biomass,

wind energy, solar energy (photothermal and photo-

voltaic converters), energy of waterfalls, waves and tides,

geothermal energy and convective-hydrothermal re-

sources [32–34]. Photothermal and photovoltaic con-

versions have been treated by Landsberg [35] and

Jarzebski [36], and, in the framework of FTT, by De Vos

[1]. The solar driven convection known as winds has

been modelled in terms of the FTT of heat engines by

treating the Earth’s atmosphere as the working fluid

[1,24, and references therein]. Upper and lower limits for

the coefficient of performance of solar absorption cool-

ing cycles have been derived from the first and second

laws [37]. These limits depend not only on the environ-

mental temperatures of the cycle components but also

on the thermodynamic properties of refrigerants, ab-

sorbents and mixtures thereof. Quantitative comparative

studies of different refrigerant–absorbent combinations

are now possible.

All chemical processes consume unrestorable natural

resources; the quicker civilization develops, the sooner

these are exhausted. Exergy was used as a measure of the

quality of these resources [2,38–40]. It is important to

calculate the rate at which industrial processes consume

exergy resources. The cumulative consumption of exergy

from unrestorable natural resources appearing in the

chain of processes leading from natural raw materials to

product expresses the ecological cost of the product

[38,39,41–44]. The exergetic ecological costs are of little

use in true optimization of production processes, even

from the viewpoint of minimization of the consumption

of natural resources. The indices of ecological costs de-

termining the extent to which technological processes

exhaust natural resources have been summarized [45];

apparent analyses of chemical processes are also avail-

able [46]. One example treats the ecological second law

analysis of heat delivery from a complex heat-power

station; the minimization of the consumption of unre-
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storable natural materials uses the exergy [41]. Cumu-

lative exergy cost seems to be suitable for industrial

chemistry. However, it is not any proper measure of

energy limits since these are purely physical quantities.

In fact, as stated in Section 1, the method of cumulative

exergy costs has serious imperfections. These are: (a)

vague sequential process; (b) date- and location-affected

exergy consumption of resources defining cumulative

cost, (c) undefined mathematical structure of costs. To

ensure potential properties for optimal costs, their defi-

nition must eliminate effect of controls and external

parameters. This is ensured in the method that deals

with optimized physical costs as energy limits. That

method is discussed below. In fact, as we shall see soon,

cumulative costs are not functions but rather functionals

of controls and state coordinates, and that only optimal

costs acquire properties of functions (potentials).

3. Energy limits for sequential operations with heat

exchange

In this work we expose several basic expressions

which quantify limits on production or consumption of

mechanical energy in operations with heat and mass

exchange. We also compare the developed optimization

criteria for work-assisted operations with those for

conventional operations (without work). As our method

rests on thermodynamics, it can deal with arbitrary

participating fluids, including, in particular the radiation

fluid. For that fluid the endoreversible limits incorpo-

rate, as a sole effect, a minimum entropy production

caused by simultaneous emission and absorption of ra-

diation. This means that limits for solar-assisted drying

operations can also be treated by the method presented

here. The method involves generally an optimization of

power and/or related work from an endoreversible se-

quence of thermal machines thus generalizing the well-

known method of evaluation of the classical exergy in

reversible sequences [46,47]. The problem of finite-rate

limits, which was briefly outlined in an earlier paper [48],

requires sequential operations with thermal machines

[49–51], such as multistage heat pumps, where total

power input is minimized at constraints which describe

dynamics of energy and mass exchange. The results are

limiting work functions in terms of end states, duration

and (in discrete processes) number of stages [52]. The

principle of one-stage operation on T–S chart is ex-

plained in Fig. 1, whereas the topological scheme of the

multistage power consumption leading to generalized

exergies of heat-pump modes is illustrated in Fig. 2.

Modelling a general work-assisted operation for the

purpose of limits evaluation is a difficult task as it in-

volves abstract (often ‘‘endoreversible’’) models and

their extensions rather than models of real operations,

yet it is consistent with general philosophy of opti-

mization [53]. Formal analogies do exist between en-

tropy production expressions in work-assisted and in

conventional operations which are helpful to develop

suitable criteria and models. In this paper we evaluate

endoreversible limits through optimization of sequential

work-assisted and solar-assisted operations which ex-

tend well-known classical operations without work such

as conventional heating, evaporation and drying. Con-

straints take into account dynamics of heat and mass

transport and rate of real work consumption. Finite-

rate, endoreversible models include irreducible losses of

classical exergy caused by resistances. Extremum per-

formance functions for optimal work, which incorporate

residual minimum entropy production, are determined

in terms of end states, duration and (in discrete pro-

cesses) number of stages. Analogies between entropy

production expressions for work-assisted operations and

those without work help formulate optimization models

of the former.

To start with a quantitative example we consider the

heat transfer-driven work generation (consumption) in

Fig. 1. Scheme of designations and temperature relations on

the T–S chart for an irreversible one-stage heat pump

ðgC 6 g6 1Þ.

Fig. 2. Multistage process of energy utilization for fluid at flow

optimized by the forward algorithm of dynamic programming.

The stage-size control is hn and the remaining controls are

components of vector un. In Bellman’s Optimality Principle

ellipse-shaped balance areas embrace successive subprocesses

which evolve by inclusion of remaining stages.
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an endoreversible thermal machine, an engine or heat

pump, which interacts with a high-T fluid (e.g., drying

gas) flowing with the mass flux Gf [3,49,50]. The multi-

stage production (consumption) of work requires the use

of the sequence of stages, Fig. 2. To get physical rather

than economic limits all stages are those with Novikov–

Curzon–Ahlborn (NCA) process [49–52]; the limits are

those for the mechanical or electrical energy. In an en-

doreversible engine a resource fluid drives the Carnot

engine from which the work is taken out. In an endo-

reversible heat pump a fluid (e.g., drying agent) is driven

in the condenser of the Carnot heat pump to which work

is supplied; in both cases the second fluid is an infinite

reservoir. The fluids are of finite thermal conductivity,

hence there are finite thermal resistances in the system.

In a multistage heating operation the fluid’s temperature

increases at each stage; the whole operation is described

by the sequence T 0; T 1; . . . ; T N . The popular ‘engine

convention’ is used: work generated in an engine, W, is

positive, and work generated in a heat pump is negative;

this means that a positive work ()W) is consumed in the

heat pump. The sign of the optimal work function

V N ¼ maxW N defines the working mode for an optimal

sequential process as a whole. In engine modes W > 0

and V > 0. In heat-pump modes, W < 0 and V < 0,

therefore working with a function RN ¼ �V N ¼ min

ð�W N Þ is more convenient. Of special attention are two

processes: the one which starts with the state T 0 ¼ T e

and terminates at an arbitrary T N ¼ T and the one

which starts at an arbitrary T 0 ¼ T and terminates at T e.

In these cases the functions V N are generalization of the

classical exergy in discrete processes with finite dura-

tions.

The state space and its influence on the system dy-

namics is determined by both the state of the finite-re-

source fluid flowing through stages of the cascade and

the properties of heat bath or the thermal reservoir. For

any finite reservoir, the state space of the overall (bath-

containing) system would necessarily involve variable

bath coordinates, and the system dynamics would then

be influenced by a difference dynamics describing the

bath history in terms of these variable coordinates.

However, in the considered case of an infinite reservoir,

the intensive parameters of the reservoir, i.e. its tem-

perature T e and chemical potentials le
i , do not change

along the process path, and this is why these variables

reside in the mathematical model as constant parameters

only. Thus, it is the condition of an infinite reservoir that

enables us to treat the power functions involved as the

reservoir-history independent. In fact, due to the infi-

niteness of the reservoir, the system’s history is expressed

exclusively in terms of the resource fluid coordinates and

their time derivatives. Moreover, the potential function

of extremum work, which is obtained via optimization

of a work integral, is of exergy type. This means that the

function contains the intensive coordinates of the bath

as parameters accompanying the state coordinates of the

finite-resource fluid.

Our use of extremum seeking methods in sequential

systems with work producers or consumers could, per-

haps, make an impression that the goal here is an eco-

nomic optimization of real thermal machines and/or

their diverse topological arrangements, which, in gen-

eral, are called thermal networks. Should such optimi-

zation be the case, a thermal system could be optimized

via a customary approach which would require: a de-

tailed network modelling, inclusion of economic ac-

counting, and occasional imbedding of the optimized

system into a broader environment to include interacting

chains. In fact, the range of optimizing in this paper is

restricted to thermodynamic limits exclusively, or, as

explained above, to a generalized quantity of the exergy

type attributed to a definite single stream of substance or

energy. Thus we search for the extremum work associ-

ated with a finite-time production (consumption) of a

single resource stream from (by) the common constitu-

ents of environment when this environment is the only

source of heat. This exergy-like quantity constitutes a

generalized potential of extremum work that depends on

the end states of the stream and its holdup time in the

system (duration). The two sorts of optimization, dis-

cussed above, are totally different and any link between

them, if at all exists, is indirect at most. In a definite real

system, a weak link may be observed when making the

exergy balance for participating streams, which is the

usual procedure made in the so-called second law ana-

lyses or thermoeconomic optimization. As a maximum

of what can be got from comparison, one could then

achieve a balance which involves exergy changes of

streams and which resembles the economic balances

appearing in customary optimizations. By considering

Figs. 3 and 4 one may compare scheme of a drying

process with endoreversible heat pump with a scheme of

a real drying process with a heat pump.

In the endoreversible case the perfect (second-law)

efficiency of the Carnot (work-producing) engine across

a finite-resource stream is essential, in more general

cases, for which the NCA efficiency formula is general-

ized, internal irreversibilities are included. Work limits

follow in terms of the time of state change and proper-

ties of boundary layers and other dissipators. The sole

dissipation in boundary layers refers to ‘‘endorevers-

ibility’’ associated with the simplest models of FTT [54].

That modelling is of a very restricted use in predicting

actual work characteristics of real thermal machines. In

fact, the restriction to external irreversibilities is unnec-

essary, and FTT models can go beyond ‘‘endoreversible

limits’’ to treat internal irreversibilities as well, see Eq.

(59) below and [55]. It is most essential, however, that in

either of two methodological versions of FTT, of which

the first gives up internal irreversibilities whereas the

second one estimates these from a model, the FTT limits
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on energy consumption or production are stronger then

those predicted by the classical exergy. In short, this

results from the ‘‘process rate penalty’’ that is taken into

account in every version of FTT.

In the hierarchy of limits resulting from more and

more detailed models, the limits of the second and

higher versions of FTT are, of course, stronger than the

limits of the first (endoreversible) version. The weakest

or the worst are limits of classical thermodynamics, re-

sulting from the classical exergy; for the latter function

see [46]. When restricting to endoreversible limits no real

thermal machines are needed; what we need are perfect

energy convertors (the Carnot jumps) and perfect ex-

ternal dissipators. In the classical Carnot analysis the

resource and environment reservoirs are insensitive to

the effect of dissipators (boundary layers, resistances,

etc.) because the reversible static situation requires

thermal homogeneity of each reservoir in the space. In

the irreversible analysis, performed here, which admits

dissipative transports in reservoirs, the inhomogeneities

of transport potentials play a non-trivial role. In con-

trast, for the purpose of a real-system optimization, an

endoreversible model of two interacting reservoirs

would be rather insufficient, or even irrelevant. When

calculating energy limits, we search for (hierarchy of)

diverse, purely physical extrema with no regard to eco-

nomic optima. In real systems the energy conversion

does not occur in Carnot units, there are many streams,

not one, and internal irreversibilities are as a rule es-

sential. Yet, for the purpose of enhanced bounds, the

endoreversible sequence of single-stream states is the

next step in comparison with the purely reversible se-

quence leading to classical exergy [46]. Further steps

(higher rank limits) are possible [3,55].

4. Controls restricted by entropy balance and operations

with pure heat flow

We begin with a single-stage engine in the standard

Novikov–Curzon–Ahlborn operation (NCA engine) in

which c is resource’s specific heat, and g1 and g2 are

thermal conductances [3], the products of heat transfer

areas and heat transfer coefficients. We shall treat a

relatively unknown formulation in which the power of

the engine is maximized with respect to both the tem-

peratures of circulating fluid, T 0
1 and T 0

2, that are con-

strained controls. The constraint is the entropy balance

of the reversible part of engine. The constraining equa-

tion is handled by the method of the Lagrange multi-

pliers. In this formulation the power yield is expressed

by an equation

P ¼ g1ðT1 � T 0
1Þ � g2ðT 0

2 � T2Þ: ð1Þ

For the engine mode of the system, this equation de-

scribes the difference between the driving heat flux and

the flux of rejected heat, P ¼ q1 � q2. The entropy bal-

ance constraint

g1ðT1 � T 0
1Þ=T 0

1 ¼ g2ðT 0
2 � T2Þ=T 0

2 ð2Þ

is used here in the form of the continuity of entropy flux.

Thus the two decisions, T 0
1 or T

0
2, in Eq. (1) are linked by

Eq. (2). The modified optimization criterion that adjoins

the constraint (2) to power function (1) by the Lagrange

multiplier k has the form

Fig. 3. A scheme of one-stage drying process with an endore-

versible heat pump.

Fig. 4. A scheme of a real drying process with a heat pump.
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P 0 ¼ P þ kC

¼ g1 T1
�

� T 0
1

�
� g2 T 0

2

�
� T2

�
þ k

g1 T1 � T 0
1

� �
T 0
1

 
�

g2 T 0
2 � T2

� �
T 0
2

!
: ð3Þ

Now, for the modified criterion P 0, coordinates of the

stationary point with respect to T 0
1, T

0
2 and k are deter-

mined. This is equivalent to setting to zero respective

partial derivatives of the function P 0

ðP 0ÞT 0
1
¼ 0; ðP 0ÞT 0

2
¼ 0; ðP 0Þk ¼ 0: ð4Þ

Explicitly, the following set of equations should be

solved

ðP 0ÞT 0
1
¼ �g1 � kg1

T1
T 0
1ð Þ2

¼ �g1 1

 
þ k

T1
T 0
1ð Þ2

!
¼ 0; ð5Þ

ðP 0ÞT 0
2
¼ �g2 þ kð�g2Þ

T2
T 0
2ð Þ2

¼ �g2 1

 
þ k

T2
T 0
2ð Þ2

!
¼ 0;

ð6Þ

ðP 0Þk ¼
g1 T1 � T 0

1

� �
T 0
1

�
g2 T 0

2 � T2
� �

T 0
2

¼ 0: ð7Þ

Of course, the last equation is the recovered entropy

constraint as the extremum condition of P 0 with respect

to k. The solution of Eqs. (5) and (6) with respect to k is

k ¼ �
T 0
1

� �2
T1

; ð8Þ

k ¼ �
T 0
2

� �2
T2

: ð9Þ

Hence the temperatures of the circulating fluid are

linked by an equation

T 0
2

� �2
T2

¼
T 0
1

� �2
T1

: ð10Þ

This is a correct formula connecting the optimal tem-

peratures T 0
1 and T 0

2 in terms of the temperatures of heat

sources. Eq. (10) leads to a simple relation between

temperatures of the circulating fluid

T 0
1 ¼

ffiffiffiffiffi
T1
T2

r
T 0
2: ð11Þ

Substituting this expression for T 0
1 into the equation of

the entropy balance we obtain

g1 T1

�
�

ffiffiffiffiffi
T1
T2

r
T 0
2

	
 ffiffiffiffiffi
T1
T2

r
T 0
2

� 	
¼

g2 T 0
2 � T2

� �
T 0
2

: ð12Þ

Whence after rearrangements, the temperature T 0
2 fol-

lows as

T 0
2 ¼

g1
ffiffiffiffiffiffiffiffiffi
T1T2

p
þ g2T2

g1 þ g2
: ð13Þ

Next, with Eq. (11), temperature T 0
1 is obtained

T 0
1 ¼

g1
ffiffiffiffiffiffiffiffiffi
T1T2

p
þ g2T2

g1 þ g2

ffiffiffiffiffi
T1
T2

r
¼ g1T1 þ g2

ffiffiffiffiffiffiffiffiffi
T1T2

p

g1 þ g2
: ð14Þ

These are optimal controls, or temperatures of the

circulating fluid in the engine at maximum power

conditions. One can now calculate the heat fluxes q1
and q2:

q1 ¼ g1 T1

�
� g1T1 þ g2

ffiffiffiffiffiffiffiffiffi
T1T2

p

g1 þ g2

	

¼ g1
g2T1 � g2

ffiffiffiffiffiffiffiffiffi
T1T2

p

g1 þ g2

� 	
¼ g

ffiffiffiffiffi
T1

p ffiffiffiffiffi
T1

p�
�

ffiffiffiffiffi
T2

p �
;

q2 ¼ g2
g1

ffiffiffiffiffiffiffiffiffi
T1T2

p
þ g2T2

g1 þ g2

�
� T2

	

¼ g2
g1

ffiffiffiffiffiffiffiffiffi
T1T2

p
� g1T2

g1 þ g2

� 	
¼ g

ffiffiffiffiffi
T2

p ffiffiffiffiffi
T1

p�
�

ffiffiffiffiffi
T2

p �
:

ð15Þ

In these equations the overall conductance g is defined

as the harmonic mean

g ¼ g1g2
g1 þ g2

: ð16Þ

The maximum power of the engine system is:

P ¼ g
ffiffiffiffiffi
T1

p ffiffiffiffiffi
T1

p�
�

ffiffiffiffiffi
T2

p �
� g

ffiffiffiffiffi
T2

p ffiffiffiffiffi
T1

p�
�

ffiffiffiffiffi
T2

p �
¼ g

ffiffiffiffiffi
T1

p�
�

ffiffiffiffiffi
T2

p � ffiffiffiffiffi
T1

p�
�

ffiffiffiffiffi
T2

p �
¼ g

ffiffiffiffiffi
T1

p�
�

ffiffiffiffiffi
T2

p �2
: ð17Þ

The optimal efficiency of the energy production equals

g ¼ 1� ðq2=q1Þ, thus, from Eqs. (13) and (14)

g ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
T2=T1

p
: ð18Þ

While this result is well known, it was obtained in the

original paper [16] with a method based on the elimi-

nation of variables. Its original derivation was therefore

much longer and less lucid. However, for a modified but

still equivalent form of criterion (1),

P ¼ g1 T1
�

� T 0
1

�
1

�
� T 0

2

T 0
1

	
ð10 Þ

extremum Lagrange multipliers are different from those

described by Eqs. (8) and (9) although the resulting

conditions (10) and (11) are still the same. This differ-

ence is the consequence of different objective functions

applied in each case while preserving the same con-

straint. That example proves that endeavors to attribute
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physical significance to Lagrange multipliers should be

made carefully. The physical significance of k is not

objective with respect to transformation of constraints.

Examples of this sort are also known in the variational

hydrodynamics of perfect fluid [13]. Clearly, however,

the approach using Lagrange multipliers leads to solu-

tion in a shortest time and applies the way that is me-

thodically the simplest. All controls are treated on an

equal footing, and the original expression for the opti-

mization criterion does not need to be transformed. The

optimal solution includes all controls in terms of states

of two fluids participating in the operation, ðT1; T2Þ.
Moreover, the optimal decisions satisfy identically pro-

cess constraints, in our case the entropy balance of the

energy generator. Equation (11) remains valid if a con-

stant entropy source is assumed in Eq. (2). Yet in this

case Eqs. (17) and (18) become more complicated and

predict worse powers and efficiencies.

5. Carnot temperatures as optimized controls in problems

of extremum power

Recently, the so-called Carnot temperatures (also

called driving temperatures) were proposed to effectively

describe various work-assisted operations [50]. In terms

of these quantities, the structural properties of the active

heat exchange in systems in which two boundary layers

are separated by the Carnot engine, the actual efficiency

is always given by the Carnot formula. To illustrate that

idea we continue considerations on a single-stage NCA

engine [3]. In systems with power production the con-

dition of the energy flux continuity does not hold. It is

just the power produced P which constitutes the differ-

ence between the two heat fluxes. Thus the continuity of

q cannot be a condition to derive the traditional notion

of the overall heat conductance, g ¼ ð1=g1 þ g2Þ�1. It is
well known, however, that the traditionally defined

overall heat conductance, g, does appear in equations of

linear thermal systems with power production [1,3]. In

fact, the traditional overall conductance g emerges nat-

urally in models of linear power production systems

provided that specific control variables are applied in

these models, the so-called Carnot temperatures, T 0 and

T 00. These temperatures ensure Carnot structure of effi-

ciency equations in irreversible operations. Several de-

tails of this approach are described below.

Efficiency of engines with irreversible processes is

always lower than the Carnot efficiency, g ¼ 1� ðT2=T1Þ.
From the formal viewpoint, the efficiency lowering may

be interpreted in the following way: in order to obtain

the correct efficiency of an ‘‘irreversible machine’’ for a

fixed temperature T2, one should apply in the Carnot

formula certain temperature T 0, lower than the temper-

ature of the fluid bulk, T1. Let us then introduce such

controlling temperature T 0 for which the efficiency of

irreversible operation (consuming or producing work) is

satisfied by the Carnot formula

g ¼ 1� T2
T 0 ; ð19Þ

where T 0 is called the first Carnot temperature, which

means that it replaces, in an effective way, the temper-

ature of the first fluid, T1. Let us compare expressions for
the engine efficiency by using temperatures of the cir-

culating medium T 0
1 and T 0

2 and (first) Carnot tempera-

ture T 0

1� T 0
2

T 0
1

¼ 1� T2
T 0 : ð20Þ

Evaluation of T 0
2 from this equation yields

T 0
2 ¼

T2T 0
1

T 0 : ð21Þ

In the entropy balance expressed in terms of tempera-

tures of the circulating medium, T 0
1 and T 0

2,

g1 T1 � T 0
1

� �
T 0
1

�
g2 T 0

2 � T2
� �

T 0
2

¼ 0; ð20 Þ

we eliminate with the help of Eq. (21) one of the tem-

peratures of circulating fluid T 0
1 or T 0

2. Doing this, for

example, with temperature T 0
2 we substitute Eq. (21) into

(20) to obtain

g1 T1 � T 0
1

� �
T 0
1

¼
g2 T2T 0

1=T
0 � T2

� �
T2T 0

1=T 0 ð22Þ

or

g1 T1=T 0
1

�
� 1
�
¼ g2 1

�
� T 0=T 0

1

�
: ð23Þ

Whence an expression follows that describes T 0
1 in the

form

T 0
1 ¼

g1T1 þ g2T 0

g1 þ g2
: ð24Þ

Consequently, the heat flux q1 satisfies an equation

q1 � g1 T1
�

� T 0
1

�
¼ g1 T1

�
� g1T1 þ g2T 0

g1 þ g2

	

¼ g1g2ðT1 � T 0Þ
g1 þ g2

¼ gðT1 � T 0Þ: ð25Þ

This means that flux q1 satisfies traditional expression of
Newtonian heat exchange for overall kinetics (operating

with the conductance g) that takes place between two

bodies having T1 and T 0.

In processes with pure heat exchange the single

quantity T 0 is sufficient as independent decision variable.

This property follows from the constraint of the balance

of entropy, linking T 0
1 and T 0

2. Yet, in order to obtain an

analogous formula for the second fluid, the second

Carnot temperature must be introduced. It is coupled
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with the temperature T2 and – by assumption – ensures

the efficiency expression in the form

g ¼ 1� T 00

T1
: ð26Þ

Thus the following equation should be satisfied

1� T 0
2

T 0
1

¼ 1� T 00

T1
: ð27Þ

We calculate from this equation T 0
1

T 0
1 ¼

T1T 0
2

T 00 ð28Þ

and substitute it to the entropy balance expressed in

terms of temperatures of circulating medium, T 0
1 and T 0

2.

We obtain

g1 T 00=T 0
2

�
� 1
�
¼ g2 1

�
� T2=T 0

2

�
: ð29Þ

Whence an equation follows that describes T 0
2 in the

form

T 0
2 ¼

g1T 00 þ g2T2
g1 þ g2

ð30Þ

and the heat exchanged with the second reservoir is

q2 � g2 T 0
2

�
� T2

�
¼ g2

g1T 00 þ g2T2
g1 þ g2

�
� T2

	

¼ g1g2ðT 00 � T2Þ
g1 þ g2

¼ gðT 00 � T2Þ: ð31Þ

Comparison of Eqs. (20) and (27) yields the following

relations that link both Carnot temperatures

T 0
2

T 0
1

¼ T2
T 0 ¼

T 00

T1
ð32Þ

or

T1T2 ¼ T 0T 00: ð33Þ

As these relationships have purely thermodynamic

character, they are valid regardless of mechanism of the

heat exchange. In particular, if one admits relations

between T 0 and T2 or T 00 and T1, these equations are valid
for engines working with the exchange of energy of solar

radiation. On the other hand, as we shall see later, the

forms of the kinetic equations (25) and (31) are con-

strained to fluids with Newtonian heat exchange.

Summing up we conclude the following. By com-

paring the entropy production expressed in terms of the

traditional variables (T 0
1 and T 0

2) and in terms of the

Carnot variables (T 0 and T 00) we have shown that the first

Carnot temperature satisfies the expression T 0 � T2T 0
1=

T 0
2. This ensures the classical Carnot formula for the

efficiency of irreversible engine in the form g ¼ 1� T2=
T 0. Similarly we have shown that the second Carnot

temperature satisfies T 00 � T2T 0
1=T

0
2; this ensures the

Carnot formula in the form g ¼ 1� T 00=T1. The com-

parison of both expressions for g yields the relation

T1T2 ¼ T 0T 00, which is the constraint condition that was

sought. General properties of Carnot controls are illus-

trated in Figs. 5 and 6.

Let us now discuss problems of power optimization

with the use of Carnot temperatures as decision vari-

ables. As previously, the constraint is represented by the

entropy balance (20) which, however, must be written

down in terms of Carnot variables, T 0 and T 00. The heat

fluxes and power P are expressed in terms of the first and

the second Carnot temperatures

q1 ¼ gðT1 � T 0Þ; ð250 Þ

q2 ¼ gðT 00 � T2Þ; ð310 Þ

P ¼ q1 � q2 ¼ gðT1 þ T2 � T 0 � T 00Þ: ð34Þ

Fig. 5. In terms of the Carnot control T 0 classical thermody-

namic relations and formulas for processes without work are

extended to irreversible processes with work production or

consumption.
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Provided that each flux is expressed in terms of its own

Carnot temperature, the significance of T 0 and T 00 fol-

lows from the observation that in linear systems with

power production each expression for heat flux (q1 or q2)
preserves the form of the traditional (Newtonian) heat

exchange. The substantiation for the Newtonian struc-

ture of expressions describing heats q1 and q2, which
contain the overall conductance g, was first found in the

earlier work [50]. As shown below, the connection be-

tween the first and second Carnot temperature may be

interpreted as a special form of the equation of conti-

nuity for the entropy flux. In the method of Lagrange

multipliers, this connection is treated as an implicit

constraint (the one, which does not serve elimination of

any control). In the subsequent text we shall exploit only

those properties T 0 and T 00, which are essential in anal-

ysis of the maximum power, P.

We shall now show that the constraint (33) may also

be derived from the condition of the continuity of en-

tropy flux across the engine. The analysis proceeds as

follows. We first apply related Carnot temperatures in

expressions describing heat fluxes in the entropy balance

based on temperatures of the circulating medium, T 0
1 and

T 0
2

g T1 � T 0� �
T 0
1

¼ g T 00 � T2ð Þ
T 0
2

: ð35Þ

Next, we eliminate from this balance one of the re-

maining temperatures of the circulating fluid, T 0
1 or T 0

2.

For this purpose we first compare expression for the

engine efficiency in terms of these temperatures and the

first Carnot temperature, T 0, Eq. (20), and then calculate

T 0
2 in the form T 0

2 ¼ T2T 0
1=T . We substitute this result into

the entropy balance, Eq. (35). After simplification we

obtain the discussed simple constraint (33). The con-

straint is thus the form expressing the entropy balance in

terms of the Carnot variables.

We can now pass to the optimization procedure. The

modified optimization criterion has the form

P 0 ¼ P þ kC

¼ g T1
�

þ T2 � T 0 � T 00�þ k T1T2
�

� T 0T 00�: ð36Þ

We calculate the partial derivatives of the function P 0

with respect to the Carnot temperatures:

ðP 0ÞT 0 ¼ �ðg þ kT 00Þ; ð37Þ

ðP 0ÞT 00 ¼ �ðg þ kT 0Þ: ð38Þ

The necessary condition for extremum

ðP 0ÞT 0 ¼ ðP 0ÞT 00 ¼ ðP 0Þk ¼ 0 ð39Þ

yields the system of three equations with unknowns k, T 0

and T 00:

g þ kT 00 ¼ 0; ð40Þ

g þ kT 0 ¼ 0; ð41Þ

T1T2 ¼ T 0T 00: ð42Þ

From the first and the second equations, the maximum

power condition follows in the form

T 0 ¼ T 00: ð43Þ

Thus, for the linear NCA engine at the maximum power

point both Carnot temperatures are equal. Substituting

this result into the constraint (33) one can evaluate op-

timal values of T 0 and T 00:

ðT 0Þ2 ¼ T1T2; ð44Þ

T 0 ¼
ffiffiffiffiffiffiffiffiffi
T1T2

p
; ð45Þ

T 00 ¼ T 0 ¼
ffiffiffiffiffiffiffiffiffi
T1T2

p
: ð46Þ

The optimal efficiency is then g ¼ ð1� T2Þ=T 0 ¼
ð1� T2Þ=

ffiffiffiffiffiffiffiffiffi
T1T2

p
, i.e., Eq. (18) is valid. The maximum

power equals

P ¼ gðT1 þ T2 �
ffiffiffiffiffiffiffiffiffi
T1T2

p
�

ffiffiffiffiffiffiffiffiffi
T1T2

p
Þ

¼ gðT1 þ T2 � 2
ffiffiffiffiffiffiffiffiffi
T1T2

p
Þ ¼ gð

ffiffiffiffiffi
T1

p
�

ffiffiffiffiffi
T2

p
Þ2: ð47Þ

All these results conform to those obtained by other

methods. Yet, the approach based on the Carnot tem-

peratures has an essential virtue that makes it superior

with respect to other approaches. Namely, its basic

property is the common analytical formalism that

comprises processes in traditional exchangers and in

work-assisted exchangers. The traditional exchangers

(without work) are described by properties: g ¼ 0,

T 0 ¼ T2, T 00 ¼ T1. These do not refer, however, to the

point maximizing power P, but to the so-called ‘‘short-

circuit’’ point. For the latter both temperatures of cir-

culating fluid are equal, T 0
1 ¼ T 0

2, P ¼ 0 and the same

heat flux flows through the two resistances, q1 ¼ q2. In
terms of Carnot variables the theory of traditional

exchangers is a particular case of the theory of work-

assisted operations. Also unifying for both sort of

Fig. 6. In terms of the Carnot control T 0 classical thermody-

namic expressions and diagrams for the entropy production in

processes without work are extended to processes with work

production or consumption.
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operations are analytical expressions and diagrams de-

scribing losses of maximum work and entropy produc-

tion, Figs. 5 and 6.

6. Modelling and optimization of power fluxes in multi-

stage systems

We shall continue the presentation of the use of

Carnot variables. In this section we focus on more

complex systems with work flux. To illustrate suitable

applications we begin with a single NCA engine with

driving fluid at flow or a heat pump with fluid’s utili-

zation [3]. Next we pass immediately to multistage

sequential operations. In the one-stage operation tem-

perature of the driving fluid changes between T 0 and T.

The utilized heat flux which leaves the condenser equals

q1 ¼ �GfcðT � T 0Þ, where Gf is the fluid flow and c-

fluid’s specific heat. Fig. 3 depicts the application of the

operation to (say) drying with an endoreversible heat

pump, whereas Fig. 4 refers to a real operation of drying

with a heat pump. The specific work produced in a single

endoreversible engine or that consumed in a single en-

doreversible heat pump is [49,50]

W � �p1=Gf ¼ 1

�
� T e

T 0

	
gðT � T 0Þ

Gf

; ð48Þ

where the bracketed expression is the first-law efficiency.

Here T 0, superscripted by n, is the Carnot temperature at

stage n, p is the power output, and g is an overall ther-

mal conductance of thermal machine related to an

overall heat transfer coefficient, a0.

In sequential multistage systems one should sum ex-

pressions such as Eq. (48) over stages. Casting the

problem in the format of the discrete maximum principle

we arrive at the discrete functional of consumed work

ð�W N Þ ¼
XN
n¼1

c 1

�
� T e

T 0n

	
T 0n�

� T n
�
hn; ð49Þ

where T 0n � T n ¼ un ¼ �qn
1=g

n and hn ¼ sn � sn�1 is the
free increment of non-dimensional time s at stage n.

The time itself is defined by Eq. (52) below. To obtain

the lower endoreversible bound for the consumed work

(but not an economic optimum) the specific work (49)

has to be minimized subject to the difference constraints

T n � T n�1

sn � sn�1 ¼ T 0n � T n;
sn � sn�1

hn ¼ 1: ð50Þ

The reader should note that the minimum work associ-

ated with this energy utilization is a purely physical

quantity, i.e., no economic terms are necessary to define

the work limit. Leaving apart the finite duration con-

straint, this is similar to the case of Linde operation,

where one evaluates a minimum work of air condensa-

tion per unit mass. This is also similar to evaluation of

the classical exergy [46], but is strongly dissimilar to

calculation of the cumulative exergy cost [2,39,41] that is

influenced by economic terms and, therefore, is neither

an objective economic quantity nor a physical energy

limit. Eq. (49) describes the work supplied to the process

in which the controlled fluid is sequentially heated in

condensers of N endoreversible heat pumps. Yet, the

formulation is valid for both process modes, i.e., it in-

cludes engines as well. In the limiting case of operation

with an infinite number of stages a work integral is

obtained in the form of Eq. (51). The integral applies the

equality u ¼ dT=dt which is valid for the temperature

representation of the heat q1 per unit overall conduc-

tance,

W � P=Gf

¼�
Z T f

T i

c 1

�
� T e

T

	
dT � T e

Z T f

T i

c
T 0 � T
� �2

TT 0 ds: ð51Þ

Eq. (51) refers to a continuous process in which the fluid

(heated in an infinite sequence of inifinitesimal heat

pumps or cooled in an infinite sequence of inifinitesimal

engines) changes its states between the initial tempera-

ture T i and the final temperature T f . The first term is

the reversible thermodynamic work W rev (the classical

exergy change). The second term is the negative of the

ambient temperature and the entropy production. The

temperature derivatives and slope coefficients are with

respect to the non-dimensional time or the number of

heat transfer units, s. The latter can be linked with the

length coordinate, x, or the fluid’s residence time t by an

equation

s � a0avF
Gc

x ¼ a0av

qc
t ¼ t

v
; ð52Þ

where a0 is the overall heat transfer coefficient, av is the

specific area, F is the cross-sectional area for fluid’s flow

and v ¼ qc=ða0avÞ plays the role of a time constant for

the system.

Eq. (51) proves that it is the entropy production that

causes the non-potential component of the work inte-

gral. We note that minimizing the entropy production in

a fixed-end sequential problem assures minimum of the

work consumption in the heat-pump mode and maxi-

mum of work production in the engine mode. Since the

first or potential term is path independent, the (non-

potential) entropy production determines the property

of the extremal trajectory. Therefore a common differ-

ential equation holds for extremals of extremum work

and minimum entropy production [51]. For the contin-

uous modes we find an equation

T
d2T
ds2

� dT
ds

� 	2

¼ 0: ð53Þ
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Eq. (53) is satisfied by function T ðtÞ which solves the

simple differential equation, _TT ¼ nT , where the constant
n is the rate indicator which is positive for fluid’s heating
and negative for fluid’s cooling. With the boundary

conditions for T1ðT1 ¼ T i at si and T1 ¼ T f at sfÞ we

conclude that an unconstrained extremal path is an ex-

ponential curve T1ðsÞ ¼ T i
1ðT f

1=T
i
1Þ

s=sf
consistent with the

following Carnot-temperature control

T 0ðsÞ ¼ T1ðsÞð1þ nÞ

¼ T i
1ðT f

1=T
i
1Þ

ðs�siÞ=ðsf�siÞ
1

�
þ lnðT f

1=T
i
1Þ

sf � si

	
; ð54Þ

where the constant n is the rate indicator which is pos-

itive for fluid’s heating and negative for fluid’s cooling.

An unconstrained extremal is an exponential curve.

Consider now extremals of the underlying multistage

process, Eqs. (49) and (50). Since the discrete model is

linear with respect to the time interval hn, a discrete al-

gorithm with a constant Hamiltonian governs the opti-

mal multistage process [52,53]. The optimal discrete

dynamics has the form

T n � T n�1

hn ¼ nT n; ð55Þ

which is the discrete analog of Eq. (55). The optimal

solution asserts that hn ¼ hn�1 and ðT nÞ2 ¼ T n�1T nþ1.

This property ensures that the temperatures T n between

the stages n and nþ 1 are geometric means of the

boundary temperatures. The Carnot temperatures, T 0n,

which assure that optimal trajectory are

T 0n ¼ T nð1þ nÞ
¼ ðT N Þn=N ðT 0Þ½nðN�1Þ=N 
�ðn�1Þ

� 1

 
þ N

sN � s0
1

�
� T 0

T N

�1=N!
: ð56Þ

The discrete solution converges to the exponential so-

lution of Eq. (53) in the limit of an infinite N. In fact, Eq.

(56) is a discrete generalization of the optimality con-

dition known for optimal controls of heat exchangers

and simulated annealing [54–58]. For exergy boundary

conditions, the optimal work associated with Eq. (56) is

a discrete generalization of the continuous finite-time

exergy [51]. Yet we should keep in mind that here we

have found an irreversible (finite time) limit of work

through the ‘‘endoreversible imbedding’’ of the Carnot

operation within the dissipative system, and after rec-

ognition that system is capable of upgrading and uti-

lizing finite resources. See Eq. (59) for non-Carnot

generators.

The structure of the control equations shows that the

driving temperature T 0 can be interpreted as the quantity

replacing the upper temperature T 0
1 of the thermal ma-

chine in the general case when both conductances g1 and

g2 are essential. Whenever the effect of the second re-

sistance ðg�1
2 Þ is negligible, T 0 ¼ T 0

1. Indeed, when g�1
2

tends to zero, T 0
2 ¼ T2T e, thus, from Eq. (140), T 0 ¼ T 0

1,

and the control equations are valid for the temperature

T 0
1. However, the crucial statement which explains how

to obtain T 0 follows from the equality T 0 ¼ T2 at the

state in which work is not produced (the so-called

‘‘short-circuit point’’ of the system, where g ¼ 0). This

leads to the theorem: the analytical expression for the

Carnot temperature T 0 can be obtained from the analysis

of the short-circuit point by solving the energy (mass)

exchange equations in which T 0 replaces T2 or T e. The

solution to these equations should be found for the tem-

peratures T 0
1 and T 0

2 in terms of the common heat flux q1;
after making the identification T 0

1 ¼ T 0
2 the temperature T 0

follows in the form T 0 ¼ f ðT1; q1; g1; g2Þ.

7. Common treatment of thermal operations with and

without work

In terms of the Carnot temperature, or the driving

control T 0, the limiting minimum work in the heat-pump

mode can be described by the optimal performance

function

R T i; T f ; sf
�

� si
�
� minð�P=GfÞ

¼ min

Z sf

si
cðT Þ 1

�
� T e

T 0

	
ðT 0 � T Þds

¼ hðT fÞ � hðT iÞ � T e sðT fÞ
�

� sðT iÞ
�

þ T e min

Z T f

T i

cðT Þ
T 0 � T
� �2

T 0T
ds: ð57Þ

This equation refers to the endoreversible limit, but it

may easily be generalized to processes with internal

dissipation as we shall show soon. Likewise, the maxi-

mum work in the engine mode is described by the op-

timal function V ¼ �R. In both cases T and T 0 are linked

by the differential constraint

dT=ds ¼ T 0 � T : ð58Þ

For multistage processes with heat pumps or engines a

fully analogous discrete picture exists with sums re-

placing integrals and differential ratios instead of de-

rivatives. The discrete counterpart of optimal cost

function (57) is then the minimum of expression (49).

Eq. (57) is the endoreversible limit for the work

consumption between two given states and for a given

number of transfer units. Even this simple limit is

stronger than the one predicted by the classical exergy.

What can be said about a yet stronger limits which in-

volves an internal dissipation in the participating ther-

mal machine? We need to recall the hierarchy of limits

stressed in Section 1. For limits of higher rank, an in-

ternal entropy generation characterized by a parameter
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p is included in the dissipation model and then Eq. 57 is

replaced by its simple generalization

R T i;T f ;sf
�

�si;p
�
¼hðT fÞ�hðT iÞ�T e sðT fÞ

�
�sðT iÞ

�
þT emin Sintr ðIÞ

 
þ
Z T f

T i

c
ðT 0�T Þ2

T 0T
ds

!
:

ð59Þ

This is in complete agreement with the Gouy–Stodola

law. For a still stronger limit, other components of total

entropy source are included at the expense of a more

detailed input of information, but with the advantage

that the limit is closer to reality. For a sufficiently high

rank of the limit, it approaches the real work quite

closely, but also the cost of the related information be-

comes very large. What is important then is a proper

compromise associated with the accepted limit of a fi-

nite rank. For limits of various ranks, inequalities are

related to R and real work W real that are valid in the

form W real > Rk � � � > R1 > R0, where R1 refers to the

change of ‘‘endoreversible exergy’’, and R0 pertains

to the change of the classical exergy. The classical ex-

ergy change constitutes then the weakest or the worst

limit on the real work. In the described scheme the

consideration of any relation between the irreversibility

and costs is unnecessary.

Let us observe that in terms of Carnot control T 0 the

analytical forms of expressions for the entropy produc-

tion and the associated dynamics (e.g., Eq. (58)) are

precisely those which describe a number of purely dis-

sipative processes i.e., those without work production or

consumption. For example, with the non-dimensional

time s defined as s ¼ Ggcg=ðGscsÞ, Eq. (58) describes the
temperature change of the dispersed phase in a process

in which the gas crosses vertically the bed of the granular

solid in a horizontal heat exchanger (HFE). A suitable

assumption here is that the equilibrium between the

outlet gas and the outlet solid is attained. Moreover, the

integral in the second line of Eq. (57) with c ¼ cs de-
scribes the associated entropy production per unit mass

of the controlled solid. Indeed, for the ‘‘workless’’ HFE

process we find

Sr ¼
Z T f

T i

1

T

�
� 1

T 0

	
dQs

¼
Z T f

T i

cg
1

T

�
� 1

T 0

	
ðT 0 � T ÞdGg=Gs

¼
Z T f

T i

cs
ðT 0 � T Þ

T 0T
ds: ð60Þ

Thus the purely dissipative process of fluidized heat

exchange can model the more difficult process with the

endoreversible energy production. The same conclusion

holds for cascades with finite number of stages. Such

analogies are formal but, nonetheless, they help signifi-

cantly to model and optimize work-assisted operations

in the realm of the entropy production expressions, not

work expressions (work terms are absent in equations of

purely dissipative systems). The approach referring to

continuous processes in a horizontal fluidized heat ex-

changer will be extended to HFE dryers of this sort.

These continuous systems are limiting configurations for

cascades of fluidized heat exchangers and dryers.

(Counterparts of resulting expressions for cascades with

finite number of stages are derivable in a straightforward

way: integrals are replaced by corresponding sums.)

8. Final remarks

We are now prepared to formulate a few basic con-

clusions. Heat exchange operations can be conducted

conventionally, in traditional heat exchangers, or in a

work-assisted way with heat-mechanical operations. The

analysis of the derived optimization models for tradi-

tional and work-assisted operations shows that a useful

parallelism is operative for expressions describing en-

tropy sources, exergy costs and kinetic equations in both

sorts of operations. This parallelism is particularly lucid

in the realm of processes with pure heat transfer in

which a special control variable T 0, called the Carnot

temperature, is essential. In the second part of this work

the parallelism is generalized to include coupled pro-

cesses (those with simultaneous heat and mass transfer)

in which case the operational models apply the suitable

Carnot potentials �1=T 0 and l0=T 0. Due to the paral-

lelism, the mathematical identity does exist between

expressions that link work and entropy production

through the Gouy–Stodola law in traditional and work-

assisted operations. With the process representation in

terms of Carnot intensities we achieve the coincidence of

the entropy production expressions in conventional and

work-assisted operations. Eq. (60) thus applies for heat-

mechanical processes as representations of their lost

work divided by T e. This is important; up to now it was

unknown whether an equation of the classical structure

could serve as a sufficiently exact model for a work-as-

sisted system. Discovery of the Carnot controls was the

necessary fact to prove the equivalence of mathematical

models for both sorts of operations. The benefit from

the described parallelism is that expressions for exergy

losses in traditional coupled exchangers (without work

production) can model exergy losses in more complex

operations, those in heat-mechanical processes. Both

multistage processes (described by difference equations

and optimization criteria in the form of sums) and cor-

responding continuous processes (described by differ-

ential equations and optimization criteria in the form of

integrals) can be modelled.

Within the thermodynamic theory of non-Carnot

efficiencies for multistage heat-mechanical operations
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with heat conducting fluids, we have shown how to

obtain suitable optimization criteria whose optimal

values describe the work limits. We have applied the

discovered parallelism between the work-assisted and

traditional operations to obtain the work limits for fi-

nite-time sequences. The potential functions, obtained

via optimization, define bounds on work consumption

or production in heat-mechanical operations. For short

durations, the consumption (lower) bound is signifi-

cantly higher than the minimal work of classical ther-

modynamics; the production (upper) bound can be

much lower. In particular these effects are associated

with an increase of real work in energy utilization op-

erations requiring only finite amount of time.

We also stress the observation that even the non-

Newtonian nature of heat transfer (when described in

terms of Carnot intensities or primed quantities) does

not change the general thermodynamic formalism. On

the other hand, the non-Newtonian nature influences the

formal structure of the heat and mass exchange equa-

tions only beyond their linear approximation. Since

various industrial media may exhibit complex non-

Newtonian properties, the method is capable of eval-

uating energy limits in arbitrarily complex systems (with,

e.g., dried bodies, radiation fluids, polymers, etc.). Some

of these applications are reported in Part II of this

paper.
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